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O Full data replica (not ECC code)

(J Keep Replicas as far apart and disjoint as possible

 Tolerate errors arising from anywhere in the
memory path
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For Detection

O Existing ECC, CRC, Parity
 Strong detection-only code
 Other diagnostic capabilities

For Correction
O Rely on replica
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O Full data replica (not ECC code)

e ABC O Keep Replicas as far apart and disjoint as possible
[ T —————— U Tolerate errors arising from anywhere in the
memory path
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For Detection

O Existing ECC, CRC, Parity

[ Strong detection-only code
 Other diagnostic capabilities

For Correction
O Rely on replica




R Quantifying Re||ab|||ty (Onus Probandi)

Analytical Modelling

* Device FIT rate: 66.1 [Sridharan et. al., SC ‘12]
* Errorrates: DUE and SDC

* Equipped with same detection scheme

Comparison Points

Chipkill: guarantees recovery from 1 DRAM chip failure in a rank
(SSC-DSD ECC code)

IBM RAIM: guarantees recovery from 1 channel failure
(RAID-3 across 5 channels)

Intel Memory Mirroring: guarantees recovery from 1 channel failure
(channel-level replication)
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Comparison against

Chipkill
(Dvé equipped with TSD)

IBM RAIM
(Dvé equipped with Chipkill)

Intel Mirroring
(Dvé equipped with TSD +
temperature scaled FIT rate)

Key Results

DUE Rate Improvement

4x

172x

11%

SDC Rate Improvement

~10°x

0.63x

1x
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Intuition
* “k-out-of-n” model systems vs “parallel n” model system

* Bottom-up vs Top-down design
* Lower bound analysis

Chipkill ECC

Dvé

IBM RAIM
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1 Use replica to improve performance

[ Route memory requests to nearest replica
O Ensure safe access to replica
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X, Y, Z B, C

 provide coherent access to both replicas during

Coherent Replication
O Builds on existing cache coherence protocols
1 maintain the replicas in sync (for reliability)

fault-free operation (for performance)
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P Performance Eval (onus probandi)

Simulation

* SynchroTrace driven gem5 [TACO 2018]

* Processor: 2-socket, 8 core/socket

* Caches: L1 (private per core, 64KB), L2 (shared per socket, 8MB)

e Memory: 2 x 8GB DDR4-2400Mhz

* Coherence Protocol: Hierarchical MOESI (intra-socket), MOSI (inter-socket)
* Interconnect: Inter-socket point-to-point (50ns), intra-socket mesh

Benchmarks
* OpenMP and Pthreads based multithreaded workloads
e 7 benchmark suites — NAS PB, Parboil, Rodinia, PARSEC, SPLASH-2x, SPEC 2017, HPC (assorted)

Comparison Points
* Baseline NUMA: requests routed to node where data is housed
* |Intel Memory Mirroring++ (hypothetical): load balances reads between mirrored channels
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 Utilize idle memory

Skewed memory utilization
1 50% of the memory is idle in 90% of the servers

Capacity O Provisioning for peak
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1 Overheads applicable only as and when
demanded by the application

Capacity

Interface to allocate high-reliability memory
O Hardware-software co-design
O OS support
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Flexible trade-off between capacity and reliability
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O On-demand Replication (onus probandi

Mapping physical address <= replica physical address

Mapping replica page pairs
OS creates page pairs in replica map table (RMT)
Single system-wide RMT to create/destroy replica page pairs
Hardware-walked RMT at directory controller

Carving/managing space required for replication
Estimate maximum DRAM resident set size
Steal memory using balloon drivers
Monitor page fault rate for thresholds
Modular design allows fallback to baseline reliability

When should replication enabled or disabled?
Notification from Control Plane (managed as a soft-setting)
Several configurations possible: per-VM, per-container, kernel-only
explicitly specified by application at malloc

System wide Replication
Entire memory space replica
Fixed function mapping
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Lowers DUE by

4x over Chipkill
172x over IBM RAIM
11% over Intel Memory Mirroring

e

hardware-software co-design
using OS/compiler support

Summary

o

&

Improves performance by
5% - 117% over baseline NUMA

3% - 107% over an improved
Intel mirroring scheme

https://github.com/adarshpatil/dve

https://adar.sh/dve
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