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About me: My journey so far...

(2012-14) Datacenter Infra Team — Virtualization & Linux Engineering
solutions architect: platform benchmarking, performance analysis

(2014-17) Masters by Research — HAShCache [TACO ‘18], TLB reach [arXiv]

memory architecture: DRAM cache, heterogeneous SoCs, virtual mem (advisor: prof. R. Govindarajan]

t I (2017-19) Research Scientist — HPC ecosystem and applications team
In e * application understanding: s/w optimization, h/w architecture for next gen

(2019—now) — Co-designing reliability and performance for the datacenter
holistic approach: integrating hardware + application
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Main memory is comprised of DRAMSs
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Pervasive coherence protocols
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Pervasive coherence protocols
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Pervasive coherence protocols
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Pervasive coherence protocols

Disaggregated memory

Inter-server coherence




Thesis insights and contributions

Employ coherence protocols to improve reliability
and performance of DRAM memory [ISCA ‘21]
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Thesis insights and contributions

Improving DRAM Reliability and Performance




The problem: Increasing DRAM Faults

Bloomberg

Markets
How One Piece of Hardware Took Down a
$6 Trillion Stock Market

By Gearoid Reidy, Shoko Oda, Min Jeong Lee, and JToshiro Hasegawa
2 October 2020, 10:47 BST Updated on 5 October 2020, 01:48 BST

That all changed on Thursday, when a piece of hardware called the No. 1
shared disk device, one of two square-shaped data-storage boxes, detected a
memory error. These devices store management data used across the
servers, and distribute information such as commands and ID and password

combinations for terminals that monitor trades.

ECCPLOIT: ECC
MEMORY VULNERABLE
TO ROWHAMMER
ATTACKS AFTERALL

Where many people thought that high-end servers
were safe from the (unpatchable) Rowhammer bitflip

= Q SPECTRUM

Hardware

DRAM'’s Damning Defects—and How
They Cripple Computers

By loan Stefanovici, Andy Hwang and Bianca Schroeder
Posted 23 Nov 2015 [ 16:00 GMT

COMPUTERWORLD  uramep ancoom ~ —=

MNEWS
Google: DRAM error rates vastly higher
than previously thought

PCs will likely require error correction code in the
future due to DRAM issues

6ODOOO

By Lucas Mearian

Caniar Renorter. Camout
senior heporter, Lompute

DRAM error rates: Nightmare on
DIMM street

A two-and-a-half year study of DRAM on
10s of thousands Google servers found
DIMM error rates are hundreds to
thousands of times higher than thought - a
mean of 3,751 correctable errors per DIMM
per year.This is the world's first large-scale
study of RAM errors in the field.

® ih @ f = A

By Robin Harris for Storage Bits | Ocu

5 22:04 GMT (23:04 BST) | Topic: Hardware

DRAM errors: from soft to hard

Every system uses dynamic random access
memory (DRAM), but how good is it? Bad

news: not nearly as good as vendors would
like us to think. Good news: we're learning.

@ jh @ f S A

By Rabin Harrls for Storage B
. 16:26 GMT (17:26 BST) | Toplc: Storage
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Progression of Reliability Mechanisms
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Replication for Reliability
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O Full data replica (not ECC code)

(1 Keep Replicas as far apart and disjointas possible

L Tolerate errors arising from anywhere in the
memory path
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Replication for Reliability
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For Detection

L Existing ECC, CRC, Parity

O Strong detection-only code
O Other diagnostic capabilities

For Correction
O Relyon replica
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Coherent Replication for Performance
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O Use replica to improve performance
L Route memory requests to nearest replica
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Coherent Replication

1 Builds on existing cache coherence protocols
.............................................................................. O maintainthe replicasin sync (for reliability)

g e L | ) | & . provide coherent access to both replicas during

 fault-free operation (for performance)




Mechanisms

O Allow-based
1 Deny-based
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O Utilize idle memory

Skewed memory utilization
L 50% of the memory is idle in 90% of the servers

Capacity O Provisioningfor peak
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Capacity overheads?
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Interface to allocate high-reliability memory
O Hardware-software co-design
Q OS support
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Memory
Replication

Lowers DUE by

4x over Chipkill
172x over IBM RAIM
11% over Intel Memory Mirroring

&y

hardware-software co-design
using OS/compiler support

Summary

'z

Improves performance by

5% - 117% over baseline NUMA
3% - 107% over an improved
Intel mirroring scheme

https://github.com/adarshpatil/dve O

https://adar.sh/dve
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Fault-tolerant disaggregated memory for accelerating FaaS




“Serverless” Function-as-a-Service
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e “Serverless” Function-as-a-Service
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e State machine workflow of stateless functions
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FUNCTIONS

L FaaS applications 4
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i Inefficiency of FaaS applications

-
Reliable
CXL.mem

FUNCTIONS
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e State maintained externally as objects in a
remote data store
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R Quantifying communication overheads
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* Functions from FunctionBench and SeBS benchmark suites
 Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs
 Communication - Amazon S3 object store (median of 100 executions)
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Inefficiency of FaaS applications

FUNCTIONS

x Communication overheads severely limit performance
Can we do better?
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* High-performance in-memory object store
* One-sided RDMA verbs to read/write objects

* Infiniband network (Mellanox ConnectX-3 NIC on PCle-gen3 x16)
e 7 s . o |
- 7 b Z g0 s 51% of execution time is spent in

QL put . . .

: b retrieving data from object store

S 60 |

£ w0 o

. 20
%@?‘“ “\ix‘\‘a\"@{\oz Qd%b‘a;x:\\agge"wb o “\x\;mv\' 40;0 o e SO¥ xo%"
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The problem: Data communication

shed on May 16, 2023 In Endless Origins

Amazon Prime Dumps Serverless
Scaling up the Prime Video for Monolithic Architecture

audio/video monitoring service and
rEd UCing COStS by 900/0 startups would obviously have smaller tech teams

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Microservices were better suited for startups which had mushroomed all over because

By Poulomi Chatterjee

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components.”
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. Performance potential for Apta

Object-granular CXL disaggregated memory
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Performance potential for Apta

Low-power SoC for
control plane operations

Object-granular CXL disaggregated memory
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Fig: Apta system schematic
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data plane operations
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Performance potential for Apta

With OpenCAPI -like access Iatency/ bandwidth for DM’
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13% communication overheads (Recall 51% for RDOMA-based object store)
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FERh Performance potential for Apta
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Object caching at compute server
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L The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
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The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
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The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
CXL 3.0 inter-node coherence protocol

Enforces SWMR invariant !
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e The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures
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The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures
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s The need for fault-tolerant coherence
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* The fault tolerance problem

Compute server failures — blocking &
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s The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &
Network congestions— high tail latency
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* Invalidations are in the critical path of a write

MemRd

eY“\Nr

e

Write

|nv-ack

| ——

| ->S
read
| pasedrevies

data

Write

S->1

ack

—

Key Problem

|->S

|

'

read_csv T

< =
parsed_reviews

sentiment_analysis

/\

publish_to sns

-] -]

write_to_db




Apta: Fault-tolerant Coherence Protocol
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Apta: Fault-tolerant Coherence Protocol

invalidation-acknowlegements

Mem . C
Write
w
A& ack
ek
MemRd 4//
«— |

wermW <

—

Pending-inv
C1

iny

e

|->S

read
eviews

data

Write

pars ed_reviews

ack

— <

S->|

Coherence-aware function scheduling
= Never schedules function invocations on servers with pending

|->S

|

< =
parsed_reviews

—] HNNEN]
</> - -
< HaE
read_csv [
v
:IIIIII:
_ EIE):
sentiment_analysis |-

/\

publish_to sns

write_to_db

x



®B~ Apta: Fault-tolerant Coherence Protocol

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)
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Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)
Ensures compute server fault-tolerant operation
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Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)
Ensures compute server fault-tolerant operation

Provides line-rate coherence
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Improves performance by Protocol verified in Murd model checker
40% - 142% over RDMA 32% lower standard deviation of exec time
21% —90% over RDMA + caching
15% - 42% over un-cached CXL
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CXL-based shared memory IPC https://github.com/adarshpatil /apta O
Bulk cache-line loads https://adar.sh/apta
Transaction atomic durability



https://github.com/adarshpatil/apta
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Summary: Thesis contributions

Unigue design point in the reliability design space
Explored a novel extrapolation of two-tier approach
Introduced flexible / on-demand reliability

Showcases a use case for shared disaggregated memory
Proposes a lightweight fault tolerance solution
Consistency & availability via fault-tolerant coherence



@’l Summary: Retrospective contemplation

Critical analysis

Software complexity: OS, scheduler Robust reliability is key for next gen memory
* technology agnostic, demand reliability (DDR, LPDDR, GDDR)

* hardware disaggregated memory (new fault models)

Problems of scale: throughput, co-location

Performance corner cases: worst-case scenarios .. . :
Application driven architecture

* Hardware fault-tolerance must match application evolution
* Good understandingof application characteristics

Revist design decisionsin-step with advances in technology

Mental model of correctness during development  shared memory systems today are more closely resembling

Think and reason from first principles traditional distributed systems
End-to-end argument to system design [Saltzer, 1984]

Tame complexity through modularization




LT Future Research Directions

* Value-added disaggregated memory
Reliability, Availability, Security, Compression....

* Redesigning distributed datacenter co-ordination services for modern
hardware
Kubernetes (scheduler), Chubby (locks), Kafka (configuration)....

* Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms



Future Research Directions

#OpenToWork — Industry Research positions
Current: Post-doc at University of Edinburgh
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) What I...

beneath the iceberg

Enjoyed... the journey
* Going with a hunch, high-level problem— usually after discussions with Vijay
* Reading related work critically
e Designing experiments to demonstrate the problem (motivation)
* Inception of a workable solution
* Proof of viability — pen/paper, creative descriptions
e Designing experiments to demonstrate the solution
Refining the idea & solution
Presenting, writing the problem, solution, pros/cons

Disliked...

* Convincing reviewers
 The journey of solitude — the imposter syndrome, the large gaps
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) What I...

beneath the iceberg

Would do differently (with benefit of hindsight)....

e Better evaluation techniques
e.g., Learn HDL, try FPGA-based prototype

Better paper positioning for maximum impact
e.g., Aptais an intersection of KV store + FaaS performance + CXL protocol

Time-management: better context switching between projects
Dealing with rejection (still not mastered this)
Prioritize mental wellbeing: self-reassurance, self-belief, avoid comparing
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