Co-designing reliability and performance
for datacenter memory

Adarsh Patil
Advisor: o
. . GNLVE,
Vijay Nagarajan (UoE) A "“a THE UNIVERSITY of EDINBURGH
Co-examiners: i DEid B f o
Vilas Sridharan (AMD) ‘é\mw\g In Ormths

Antonio Barbalace (UoE)

About me: My journey so far...

(2012-14) Datacenter Infra Team — Virtualization & Linux Engineering
solutions architect: platform benchmarking, performance analysis

(2014-17) Masters by Research — HAShCache [TACO ‘18], TLB reach [arXiv]

memory architecture: DRAM cache, heterogeneous SoCs, virtual mem (advisor: prof. R. Govindarajan]

t I (2017-19) Research Scientist — HPC ecosystem and applications team
In e * application understanding: s/w optimization, h/w architecture for next gen

(2019—now) — Co-designing reliability and performance for the datacenter
holistic approach: integrating hardware + application

Memory — a perpetual conundrum!

——SRAM ——SDRAM Remote DRAM
latency

cost _ /\\ ___ bandwidth

=4

capacity reliability

Memory — a perpetual conundrum!

——SRAM ——SDRAM Remote DRAM
latency

registers

cost / A ___ bandwidth Ssii(&d
7 Dis-

aggrega
ted

capacity reliability

Thesis objective

——SRAM ——— SDRAM Remote DRAM «++++- Objective High-performance, high-reliability memory

latency

registers

bandwidth Stacked
DRAM

cost

O

aggrega
ted
Mem

capacity reliability

Datacenter memory

SRAM
(registers,
caches)

| | NN SDRAM
\.__| L ‘ I (DDR)

Datacenter memor

Socket 0

Core

Core

Core Core

Core |L1] L1|Core

o

NUMA

Socket 1

cache coherent

Core L1|Core

Mem Ctrl

interconnect

Remote
DRAM for
Socket 1

Remote
DRAM for
Socket 0

Datacenter memory

Disaggregated memory

Main memory is comprised of DRAMSs

Shared main memory

— SRAM o CXL
— (reg|5tef$. 8 interconnect
caches)

CXL Port
Mem Ctrl

Al SDRAM NUMA

// (DDR Socket 0 Socket 1
N e
[[lcoreta] R1jCore| | | { [icore ul Illi(orel \ '_)
""" — el |Gl v | T .

| = | | el fldee || Disaggregated memory
’ fcoreu1] 01| core| o cache coherent [core]ual [t core]

—| EY| 5= |IC | == et | |
’ feorefu] | |fuafeerel || inhrconnece || feorelud i cord

“Directory - ‘ Directory il

|
\ 2l Yo
W\ Mem Cerl -/)

Remote te
/ Socket 1 / Socket

Pervasive coherence protocols

(&R _

Core E L e
—| el __ SRAM o
— IR T‘] o] [T (registers, .
lEI_ Core caches) interconnect
— | CXLPort |

Mem Ctrl

| 1
\L_Mgm_cm_ /—

_ SDRAM NUMA

p Y P —————
{f :j(omfnj! ‘:\l}(o«} | L if i{om \1 llli(ore]: \ ' -
| ||l | feonlul} il Disaggregated memory
o] o lea] corel cache coherent | e | b ulcod ||
| feoufu] | [l | [icachecoherent {1 feoulid | fucor
c(m—}@ i= core ;—i;\terconnect V| lcorelu JlIE ["}‘WJ |
[—Directory.] J = ‘: Directory |
\—demQd__J / — \ MemGrd)) f—
) —/
Remote
, DRAM for

/ Socket 1

| [] |]]

Pervasive coherence protocols

— Core L1 ['-T

| (e 2 Jlgore SRAM
] lCore ll] t1|core] | [(registers,
] m u Core] caches)
| | Directory 1 [

' \[_M.em_cm_ /—

SDRAM
(DDR)

Intra-processor coherence

Pervasive coherence protocols

Inter-p rocessor coherence

NUMA

= — T o e T
ull |kaicoee] [icoreltt ui(o \
P ‘ L L))
uf | 11| Core Core [L1] | L1 C
[— —| == ;
ul| | jafcore /M;- Core/L1] | ulc
e £ - —Lf-o- !
N . Vv i
1 1) Coce interconnect || ey e
t ___ Directory |
\ — L\ 1)}

Remote
; DRAM for
/ Socket 1

Pervasive coherence protocols

Disaggregated memory

Inter-server coherence

Thesis insights and contributions

Employ coherence protocols to improve reliability
and performance of DRAM memory [ISCA ‘21]

Thesis insights and contributions

5 | Employ coherence protocols to improve reliability
! and performance of DRAM memory [ISCA ‘21]

C% Harden the coherence protocols against common

Thesis insights and contributions

Improving DRAM Reliability and Performance

The problem: Increasing DRAM Faults

Bloomberg

Markets
How One Piece of Hardware Took Down a
$6 Trillion Stock Market

By Gearoid Reidy, Shoko Oda, Min Jeong Lee, and JToshiro Hasegawa
2 October 2020, 10:47 BST Updated on 5 October 2020, 01:48 BST

That all changed on Thursday, when a piece of hardware called the No. 1
shared disk device, one of two square-shaped data-storage boxes, detected a
memory error. These devices store management data used across the
servers, and distribute information such as commands and ID and password

combinations for terminals that monitor trades.

ECCPLOIT: ECC
MEMORY VULNERABLE
TO ROWHAMMER
ATTACKS AFTERALL

Where many people thought that high-end servers
were safe from the (unpatchable) Rowhammer bitflip

= Q SPECTRUM

Hardware

DRAM'’s Damning Defects—and How
They Cripple Computers

By loan Stefanovici, Andy Hwang and Bianca Schroeder
Posted 23 Nov 2015 [16:00 GMT

COMPUTERWORLD uramep ancoom ~ —=

MNEWS
Google: DRAM error rates vastly higher
than previously thought

PCs will likely require error correction code in the
future due to DRAM issues

6ODOOO

By Lucas Mearian

Caniar Renorter. Camout
senior heporter, Lompute

DRAM error rates: Nightmare on
DIMM street

A two-and-a-half year study of DRAM on
10s of thousands Google servers found
DIMM error rates are hundreds to
thousands of times higher than thought - a
mean of 3,751 correctable errors per DIMM
per year.This is the world's first large-scale
study of RAM errors in the field.

® ih @ f = A

By Robin Harris for Storage Bits | Ocu

5 22:04 GMT (23:04 BST) | Topic: Hardware

DRAM errors: from soft to hard

Every system uses dynamic random access
memory (DRAM), but how good is it? Bad

news: not nearly as good as vendors would
like us to think. Good news: we're learning.

@ jh @ f S A

By Rabin Harrls for Storage B
. 16:26 GMT (17:26 BST) | Toplc: Storage

Progression of Reliability Mechanisms

Memory

Replication

e
\
\
\ 4
\ 4
\ 4
-

v

Progression of Reliability Mechanisms

Memor

Replication

ey Row/column sparing

Cell SECDED ECC, in-DRAM ECC

Memor

Chip Chipkill ECC / Multi-tier ECC
Bank

DRAM _

- Row/column sparing

Cell SECDED ECC, in-DRAM ECC

Dwve

DoaoDono @

Progression of Reliability Mechanisms

PR

Memory

Replication
Channel IBM RAIM, Intel Memory Mirroring
DIMM
Rank
Chip Chipkill ECC / Multi-tier ECC
Bank
DRAM _
Array Row/column sparing

Cell SECDED ECC, in-DRAM ECC

Progression of Reliability Mechanisms

Memory
Replication

Channel IBM RAIM, Intel Memory Mirroring

DIMM
Rank

Chip Chipkill ECC/ Multi-tier ECC

Bank

DRAM

P Row/column sparing Performance overheads

Cell SECDED ECC, in-DRAM ECC

Replication for Reliability

N

@ Dvé insights

v

O Full data replica (not ECC code)

(1 Keep Replicas as far apart and disjointas possible

L Tolerate errors arising from anywhere in the
memory path

LA UL

J) -

_:_l_.: ..- : l. I .;.. i

XY,

N

Replication for Reliability

Coherent >: — \\ | //
nect] — @
St
| I Irri v
A B,C

Replication for Reliability

L1111l L1111l
= :< Coherent >: — \\‘ //
- — terconnect] — ’\ ’
"1
|||| | IIII | v
XY Z A, B, C

For Detection

L Existing ECC, CRC, Parity

O Strong detection-only code
O Other diagnostic capabilities

For Correction
O Relyon replica

o

E E < Coherent E E R \ /.
E . E interconnect = o - - \g/ DVé insights
w
I U Full data replica (not ECC code)

IR A B,C O Keep Replicas as far apart and disjointas possible
- 1 Tolerate errors arising from anywhere in the
memory path

For Detection
L Existing ECC, CRC, Parity
O Strong detection-only code

e
o o
- L Other diagnostic capabilities
Cown
o
e
oy
¥

- Dvé For Correction
Q Relyon replica

Coherent Replication for Performance

V7
N~ o
@ Dvé insights
w
O Use replica to improve performance

Coherent Replication

V7
il P 4 Coherent ,\q — ’@;r Dvé insights
N v/

O Use replica to improve performance

interconnect

XY Z A, B,C

"!ﬂl_ﬂ;n |

Coherent Replication

|
N\
il LIl <
: : Coherent : : R
— r— interconnect — [
| l 1l I | 11
XY Z A B,C
................... Replicas

/

’

Dvé insights
O Use replica to improve performance
L Route memory requests to nearest replica

LA |

Coherent Replication

write(A) |
Ll HHEEN < /:
: D : Coherent : @ : \§’ Dvé insights
— = < T — >: — O Use replica to improve performance
= — = — O Route memory requests to nearest replica
| I 1111 I | 1111 U Ensure safe access to replica
XY Z B, C
.......................... Replicas

"!ﬂl_ﬂ;n |

Coherent Replication

Y
L1l L1111 -
: : Coherent : : \,_,,
5[E< > |AI| E N
— o interconnect — —
| I 111 I | 11
X,Y,Z X B, C
.................. Replicas

Dvé insights

O Use replica to improve performance

L Route memory requests to nearest replica
O Ensure safe access to replica

"!ﬂl_ﬂ;n |

Coherent Replication

V7
C Dvé insights
w
O Use replica to improve performance
L Route memory requests to nearest replica

O Ensure safe access to replica

N (

< Coherent >
interconnect

Coherent Replication

1 Builds on existing cache coherence protocols
.. O maintainthe replicasin sync (for reliability)

g e L |) | & . provide coherent access to both replicas during

 fault-free operation (for performance)

Mechanisms

O Allow-based
1 Deny-based

Reliability
Performance

Capacity

Duve

EE@ Capacity overheads?

Memory
Replication

NI
~ -~
N~ o

T Dvé insights
w

O Utilize idle memory

Skewed memory utilization
L 50% of the memory is idle in 90% of the servers

Capacity O Provisioningfor peak

Dwe

o el L

Capacity overheads?

U L

Memory

Replication
N7
} ‘?’ Dvé insights
L Overheadsapplicableonly as and when
demanded by the application
Capacity

Interface to allocate high-reliability memory
O Hardware-software co-design
Q OS support

Dwve

Capacity overheads?

Memory
Replication

\
~ ~
I\

«

Capacity

LITI—J

Flexible trade-off between capacity and reliability

Memory
Replication

Lowers DUE by

4x over Chipkill
172x over IBM RAIM
11% over Intel Memory Mirroring

&y

hardware-software co-design
using OS/compiler support

Summary

'z

Improves performance by

5% - 117% over baseline NUMA
3% - 107% over an improved
Intel mirroring scheme

https://github.com/adarshpatil/dve O

https://adar.sh/dve

https://github.com/adarshpatil/dve
https://adar.sh/dve

Thesis insights and contributions

Sy

Fault-tolerant disaggregated memory for accelerating FaaS

“Serverless” Function-as-a-Service

AWS Lambda

)

IBM Cloud

F

ﬂﬂﬂﬂﬂﬂ

©

Google Cloud
Functions

Azure Functions

e “Serverless” Function-as-a-Service

Reliable
CXL.mem
Efficiency @ Lower TCO
Google Cloud
A Functions < >
. . AWS Lambda Azure Functions .
Elasticity Modularity
Productivity IBM Cloud Fa a S Knative Faster time
Functions tO market
® \ ¥ 4
Scalability

. Simplicity
Cloudflare Workers

Oracle Functions

FUNCTIONS

o FaaS applications /

Reliable) ==
CXL.mem

e State machine workflow of stateless functions

[——==-]

read_csv

v

sentiment_analysis

/\

publish_to_sns write_to_db

FUNCTIONS

L FaaS applications 4
Reliable () =2
CXlL,.mem
* Cloud provider dynamically orchestrates and i
schedules functions on a fleet of compute servers read_cov ALE
:“””:
sentiment_analysis EIIE
publish_to_sns write_to_db

INNNEN]
3
w
LI
HNNEN]
2]
=

i Inefficiency of FaaS applications

-
Reliable
CXL.mem

FUNCTIONS

’

e State maintained externally as objects in a
remote data store

parsed_reviews

—1 | L

read_csv [

[HREEN]
2
=
LI

\ 4

Ll

d
" parsed_reviews

g c2
sentiment_analysis |3 E

\ o

publish_to_sns

write_to_db

IHENEN]
H
w
TTTT

HNNEN]
2]
=

FUNCTIONS

i Inefficiency of FaaS applications 4

-
Reliable
CXL.mem

}

read_csv [
* State maintained externally as objects in a
remote data store 5 “omssieien | sentiment_analysis {af

'Oe/-sed r i — UL
x Splitting state-compute adds communication overheads \W \

How much? ,

write_to_db

IHENEN]
H
w
TTTT

Sidy
R Quantifying communication overheads

-

* Functions from FunctionBench and SeBS benchmark suites
 Compute - Optimized with Intel OneAPI, run on 16-core Skylake CPUs
 Communication - Amazon S3 object store (median of 100 executions)

100 o A

/ % 7] compute
% ? d get
& 80 % @ put
2 60 % : .
2 0
96% of execution time is spent
5 40 : C
b in retrieving data from S3
i;\c
20 ﬁ
[R 4
0 SU &\O\\ Ay o A7 “\\\\ ;,‘%.\0\4 »‘)\0\‘ C’._«;\O\\ o8 DC‘
\ [e LS oy
%\“2»9 \(\\ v v\\ Q \\‘\ (& o C/o\\\\ v O . o A\ & e(é) 5% (e}
o \“\z\%/ o

-
Reliable
CXL.mem

Inefficiency of FaaS applications

FUNCTIONS

x Communication overheads severely limit performance
Can we do better?

parsed_reviews

— | Ll
</ - —
9k
read_csv [
v
Ll

d
" parsed_reviews

sentiment_analysis

T~

publish_to_sns

write_to_db

IHENEN]
H
w
TTTT

HNNEN]
2]
=

Ry
£ Can we do better?

-
Reliable
CXL.mem

* High-performance in-memory object store
* One-sided RDMA verbs to read/write objects

* Infiniband network (Mellanox ConnectX-3 NIC on PCle-gen3 x16)
e 7 s . o |
- 7 b Z g0 s 51% of execution time is spent in

QL put . . .

: b retrieving data from object store

S 60 |

£ w0 o

. 20
%@?‘“ “\ix‘\‘a\"@{\oz Qd%b‘a;x:\\agge"wb o “\x\;mv\' 40;0 o e SO¥ xo%"

350\\"\6’ gra? ' 0o® g oS

prime video |
N1

The problem: Data communication

shed on May 16, 2023 In Endless Origins

Amazon Prime Dumps Serverless
Scaling up the Prime Video for Monolithic Architecture

audio/video monitoring service and
rEd UCing COStS by 900/0 startups would obviously have smaller tech teams

The move from a distributed microservices architecture to a monolith
application helped achieve higher scale, resilience, and reduce costs.

Microservices were better suited for startups which had mushroomed all over because

By Poulomi Chatterjee

“The two most expensive operations in terms of
cost were the orchestration workflow and when
data passed between distributed components.”

o2

. Performance potential for Apta

Object-granular CXL disaggregated memory

-
Reliable
CXL.mem

Performance potential for Apta

Low-power SoC for
control plane operations

Object-granular CXL disaggregated memory

—1

o=

out-of-band
config bus

Mem
Ctrl

Cose ot o o |

(LR

CPU

LLLLLLLLL
compute server

ITTITHITTITY

CPU

LLLLLLLLLLL
compute server

LSRR

J

CXL 3.0 links <

CPU

LLLLLLLLLLL ;
compute server

AT

Fig: Apta system schematic

Pooled + shared memory on
centralized memory server

Specialized controllers for
data plane operations

Hardware load/store interface
Cache-able memory

ol

Performance potential for Apta

With OpenCAPI -like access Iatency/ bandwidth for DM’

412x 139% ,
120
B u S3
_100| RDMA
g DM
ERE
< |
o 60 _ _
?f B] 2X over
A 40 RDMA object store
20 m (59x over S3
il
A - \'$ 171 A% 0O “ A0
:6&% .)(J\O {{640 e%XrL @\) 6\0 K)\ 5\0 ‘({\e
%KB@“ e{.@\xfl)ﬁ’ ‘i\/@‘a%e age” ot 0(0?{6% 600600@ %te% ge©
o™ 3ed Y y C " oe X \O%}S
) !

13% communication overheads (Recall 51% for RDOMA-based object store)
" ThymesisFlow [MICRO 20]

FERh Performance potential for Apta

Reliable
CXL.mem
Object caching at compute server
90 412x ! P 834 % 139x! P 164 x
1
B s3
100 | RDMA
0 DM
g B DM+-caching
280
S
2, 60| |
=] 2.3x over
Q | | .
2, 40 RDMA object store
op]
I ETe (
b 0 o A1 o ov o o“ e
NI e s 100 o e A oo o
g%@ A eﬂ‘a\X %@“/Q‘a% '\ﬁ"‘a%e o o e e 9*00. e %{6 o@
oY \@3%6’ \Ogoxﬁ

FERh Performance potential for Apta

Reliable
CXL.mem
Object caching at compute server
90 412x ! P 834 % 139x! P 164 x
1
B s3
100 | RDMA
0 DM
R B DM-+caching
S
2, 60|]
= - 2.3x over
i - | , Our target!
2, 40 RDMA object store
op]
| BT (
e “O «Q\‘» VA R\Y o 0’9 Q‘(\ e‘&“
‘Q,;CQ . ALY oL CR hosss S\ Xq};\ 6\ o
g%@ A eﬂ‘a\X %@“/Q‘a% '\ﬁ"‘a%e o o e e 9*00. e %{6 o@
a0 0o \oi®

L The CXL.mem coherence

* Enforcing strong consistencyin presence of caching

ol

The CXL.mem coherence

* Enforcing strong consistencyin presence of caching

|

IPIITETRg
\’b'(ﬁ\l g g
Q B\ read_CSV TTTTTT
(’b\ﬂ/ ‘e\l\e
0/
>
\ \ 4
‘pa rsed reviews | 00 [<»| | A
E——

INNNEN]
B
N
TTTTTT

PE——
parsed_reviews | santiment analvsis
|J'|_ \Parse < Y

=Views
publish_to sns write_to_db

IIIIIIIIIIII

H
w
ITTTT1
H
=

ITITTT ITITTT

ol

The CXL.mem coherence

* Enforcing strong consistencyin presence of caching
CXL 3.0 inter-node coherence protocol

Enforces SWMR invariant !
IIIIII
(ﬁ‘l é g
s read csv Rund
o —
@ o
88
56
/ v
‘parsed reviews UL
S— = =
+«— | q1C2| E
] w";ﬁs sentiment_analysis :,,:
e

=Views
publish_to sns write_to_db

ITITTT ITITTT

ITITTT ITITTT

o2

-

write

ack

The CXL.mem coherence

|->S

—] 11l
N = -
@ d - =
&2 q° rea CcSsv TTTTTT
oS oV —
[eé/‘e\l\
S
Qz‘ v
IIIIII

|

INNNEN]
B
N
TTTTTT

sentiment_analysis

/\

-] -]

publish_to sns

write_to_db

L The CXL.mem coherence

-
Reliable
CXL.mem
:||||||:
> 4 L<E
Mem c1 C2 C3 W read_csv P
> -

Write
% VL
N\em\N(ack I _> S ::: IIIIII

INNNEN]
B
N
TTTTTT

ead - ‘! sentiment_analysis [
MRl e ——
\da*, |->S

publish_to sns write_to_db

-
Reliable
CXL.mem
Mem wiite
ek
MemRd 4,/
<«
Inv
1nv-ack

eﬂ‘\N‘

o

The CXL.mem coherence

|->S

|

RS =
o read_csv [
(’5\“/
v
-
" parsed_reviews Sentiment_ana|ySiS

/\

-]

publish_to sns

-]

write_to_db

-
Reliable
CXL.mem

Write

| ——

MemRd 4,/
—]
iny
{nv-ack
‘&
read

MemRd

eviews

The CXL.mem coherence

pars ed_"
<

|->S

|->S

|

publish_to sns

——] 111111
-</> - -
o [E
éa‘a' read_csv g
(’5\“/
|
M
e e e _—/> -
< | C2
~_parsed_reviews | santiment analysis |3
e S —analy
oreviens \

write_to_db

e The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures

o2

-

The need for fault-tolerant coherence

* The fault tolerance problem
Compute server failures

Mem C

e\

/

MemRd

Write
revi ews

y
ack

e

PR

<~]

iny

|->S
read

data

Write

pars ed_reviews

S->|

|->S

|

T

:

5 d £

XS) read_csv B
3 < %\ﬂ - ‘e\i\e

e\ -~
Q’a‘s \ 4
‘p arsed_reviews

e [
LEE pa rs%revi ews

sentiment_analysis

INNNEN]
B
N
TTTTTT

/\

-]

publish_to sns

-]

write_to_db

2

s The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &

Mem , Cl C2 C3
Write
Parsed,\’e\f‘e""S
4&4 |->S
read
MemRd 4//
4/4>\ data
|->S
Write
iny

S->|

|

q :
o -
2 p -
R read_csv
S
e\ -~
Q’a‘s v

‘ " =]
parsed_reviews
[

”‘! parsxfe"‘ews sentiment_analysis |4

INNNEN]
B
N
TTTTTT

/\

-]

publish_to sns

-]

write_to_db

2

s The need for fault-tolerant coherence

-

* The fault tolerance problem

Compute server failures — blocking &
Network congestions— high tail latency

Mem , Cl C2 C3
Write
Parsed,\’e\f‘e""S
4&4 |->S
read
MemRd 4//
4/4>\ data
|->S
Write
/',7[/
‘nV_aCk S -> I
A&< ack
—

—] INNNNN]
2 = =
- read_csv T

3~ ale
@ 5 ‘e“‘e
R
Q \ 4

|

A :
parsed_reviews

e [
LEE pa rs%revi ews

||||||

sentiment_analysis

INNNEN]
B
N
TTTTTT

/\

-] -]

publish_to sns write_to_db

-
Reliable
CXL.mem

* Invalidations are in the critical path of a write

MemRd

eY“\Nr

e

Write

|nv-ack

| ——

| ->S
read
| pasedrevies

data

Write

S->1

ack

—

Key Problem

|->S

|

'

read_csv T

< =
parsed_reviews

sentiment_analysis

/\

publish_to sns

-] -]

write_to_db

Apta: Fault-tolerant Coherence Protocol

Mem C

e\

Write

iews
ed_rev
P ars
=

/\>

MemRd

e

—

Pending-inv
C1

PR

<~]

o |

iny

e

Lazy invalidation policy
Write is acknowledged immediately

|->S

read
eviews

data

Write

pars ed_reviews

ack

— <

S->|

Invalidation messages are sent asynchronously and tracked

|->S

|

read_csv

\ 4

<
parsed_|

reviews sentiment_analysis

/\

publish_to sns write_to_db
IIIIII_ _IIIIII_
: 3[alf

Apta: Fault-tolerant Coherence Protocol

invalidation-acknowlegements

Mem . C
Write
w
A& ack
ek
MemRd 4//
«— |

wermW <

—

Pending-inv
C1

iny

e

|->S

read
eviews

data

Write

pars ed_reviews

ack

— <

S->|

Coherence-aware function scheduling
= Never schedules function invocations on servers with pending

|->S

|

< =
parsed_reviews

—] HNNEN]
</> - -
< HaE
read_csv [
v
:IIIIII:
_ EIE):
sentiment_analysis |-

/\

publish_to sns

write_to_db

x

®B~ Apta: Fault-tolerant Coherence Protocol

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)

-
#R Apta: Fault-tolerant Coherence Protocol

-
Reliable
CXL.mem

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)
Ensures compute server fault-tolerant operation

—] 111111
/ - C
s
\¥a - -
Mem C1 C2 C3 o2 read_csv_ [frmrm
Write - <
4&<* 1> N {1
ead - - parsed_reviews | sentiment_analysis |
L, parsed.
\dat\a. |->S
write publish_to sns write_to_db
d_reviews gpanasn . — I .
| () ()
N\em\l\“ “< ack hiud Ruind
.
/ inv
Pending-inv _|
C1

-
#R Apta: Fault-tolerant Coherence Protocol

-
Reliable
CXL.mem

Lazy linearizability (Lazy invalidation policy + Coherence-aware scheduling)
Ensures compute server fault-tolerant operation

Provides line-rate coherence
(,‘?l E E
Mem write Cl C2 C3 (wé“@ read_csv [Frmm
&4 |->S T e — z"z
oad = *parsed_reviews | sentiment_analysis |
PR mafsed
\dat\a. | ->S
write publish_to sns write_to_db
reviews | T
,M EIEIE EIEE
ﬂ"!l ack :II: :||:
. I —
Pending-inv _|
C1

dZ n
L Apta Summary

-
Reliable
CXL.mem

vz

Improves performance by Protocol verified in Murd model checker
40% - 142% over RDMA 32% lower standard deviation of exec time
21% —90% over RDMA + caching
15% - 42% over un-cached CXL

K
s %
el ()

CXL-based shared memory IPC https://github.com/adarshpatil /apta O
Bulk cache-line loads https://adar.sh/apta
Transaction atomic durability

https://github.com/adarshpatil/apta
https://adar.sh/apta

i

Summary: Thesis contributions

Unigue design point in the reliability design space
Explored a novel extrapolation of two-tier approach
Introduced flexible / on-demand reliability

Showcases a use case for shared disaggregated memory
Proposes a lightweight fault tolerance solution
Consistency & availability via fault-tolerant coherence

@’l Summary: Retrospective contemplation

Critical analysis

Software complexity: OS, scheduler Robust reliability is key for next gen memory
* technology agnostic, demand reliability (DDR, LPDDR, GDDR)

* hardware disaggregated memory (new fault models)

Problems of scale: throughput, co-location

Performance corner cases: worst-case scenarios .. . :
Application driven architecture

* Hardware fault-tolerance must match application evolution
* Good understandingof application characteristics

Revist design decisionsin-step with advances in technology

Mental model of correctness during development shared memory systems today are more closely resembling

Think and reason from first principles traditional distributed systems
End-to-end argument to system design [Saltzer, 1984]

Tame complexity through modularization

LT Future Research Directions

* Value-added disaggregated memory
Reliability, Availability, Security, Compression....

* Redesigning distributed datacenter co-ordination services for modern
hardware
Kubernetes (scheduler), Chubby (locks), Kafka (configuration)....

* Efficient shared disaggregated memory
Heterogenous compute, consistency-directed coherence mechanisms

Future Research Directions

#OpenToWork — Industry Research positions
Current: Post-doc at University of Edinburgh

c/\7\c’
) What I...

beneath the iceberg

Enjoyed... the journey
* Going with a hunch, high-level problem— usually after discussions with Vijay
* Reading related work critically
e Designing experiments to demonstrate the problem (motivation)
* Inception of a workable solution
* Proof of viability — pen/paper, creative descriptions
e Designing experiments to demonstrate the solution
Refining the idea & solution
Presenting, writing the problem, solution, pros/cons

Disliked...

* Convincing reviewers
 The journey of solitude — the imposter syndrome, the large gaps

c/\7\c’
) What I...

beneath the iceberg

Would do differently (with benefit of hindsight)....

e Better evaluation techniques
e.g., Learn HDL, try FPGA-based prototype

Better paper positioning for maximum impact
e.g., Aptais an intersection of KV store + FaaS performance + CXL protocol

Time-management: better context switching between projects
Dealing with rejection (still not mastered this)
Prioritize mental wellbeing: self-reassurance, self-belief, avoid comparing

	Slide 1: Co-designing reliability and performance for datacenter memory
	Slide 2: About me: My journey so far…
	Slide 3: Memory – a perpetual conundrum!
	Slide 4: Memory – a perpetual conundrum!
	Slide 5: Thesis objective
	Slide 6: Datacenter memory
	Slide 7: Datacenter memory
	Slide 8: Datacenter memory
	Slide 9: Main memory is comprised of DRAMs
	Slide 10: Pervasive coherence protocols
	Slide 11: Pervasive coherence protocols
	Slide 12: Pervasive coherence protocols
	Slide 13: Pervasive coherence protocols
	Slide 14: Thesis insights and contributions
	Slide 15: Thesis insights and contributions
	Slide 16: Thesis insights and contributions
	Slide 17: The problem: Increasing DRAM Faults
	Slide 18: Progression of Reliability Mechanisms
	Slide 19: Progression of Reliability Mechanisms
	Slide 20: Progression of Reliability Mechanisms
	Slide 21: Progression of Reliability Mechanisms
	Slide 22: Progression of Reliability Mechanisms
	Slide 23: Replication for Reliability
	Slide 24: Replication for Reliability
	Slide 25: Replication for Reliability
	Slide 26: Replication for Reliability
	Slide 27: Replication for Reliability
	Slide 28: Coherent Replication for Performance
	Slide 29: Coherent Replication
	Slide 30: Coherent Replication
	Slide 31: Coherent Replication
	Slide 32: Coherent Replication
	Slide 33: Coherent Replication
	Slide 34: Coherent Replication
	Slide 35: Coherent Replication
	Slide 36: Capacity overheads?
	Slide 37: Capacity overheads?
	Slide 38: Capacity overheads?
	Slide 39: Capacity overheads?
	Slide 40: Summary
	Slide 41: Thesis insights and contributions
	Slide 42: “Serverless” Function-as-a-Service
	Slide 43: “Serverless” Function-as-a-Service
	Slide 44: FaaS applications
	Slide 45: FaaS applications
	Slide 46: Inefficiency of FaaS applications
	Slide 47: Inefficiency of FaaS applications
	Slide 48: Quantifying communication overheads
	Slide 49: Inefficiency of FaaS applications
	Slide 50: Can we do better?
	Slide 51: The problem: Data communication
	Slide 52: Performance potential for Āpta
	Slide 53: Performance potential for Āpta
	Slide 54: Performance potential for Āpta
	Slide 55: Performance potential for Āpta
	Slide 56: Performance potential for Āpta
	Slide 57: The CXL.mem coherence
	Slide 58: The CXL.mem coherence
	Slide 59: The CXL.mem coherence
	Slide 60: The CXL.mem coherence
	Slide 61: The CXL.mem coherence
	Slide 62: The CXL.mem coherence
	Slide 63: The CXL.mem coherence
	Slide 64: The need for fault-tolerant coherence
	Slide 65: The need for fault-tolerant coherence
	Slide 66: The need for fault-tolerant coherence
	Slide 67: The need for fault-tolerant coherence
	Slide 68: Key Problem
	Slide 69: Āpta: Fault-tolerant Coherence Protocol
	Slide 70: Āpta: Fault-tolerant Coherence Protocol
	Slide 71: Āpta: Fault-tolerant Coherence Protocol
	Slide 72: Āpta: Fault-tolerant Coherence Protocol
	Slide 73: Āpta: Fault-tolerant Coherence Protocol
	Slide 74: Āpta Summary
	Slide 75: Summary: Thesis contributions
	Slide 76: Summary: Retrospective contemplation
	Slide 77: Future Research Directions
	Slide 78: Future Research Directions
	Slide 79: What I...
	Slide 80: What I...

