
FaaS with Disaggregated Shared Memory

Adarsh Patil
Vijay Nagarajan, Nikos Nikoleris

UK Systems Research Workshop 2021

Bo t

What is Function-as-a-Service (FaaS)

• Latest category in Cloud Computing Services

"Serverless" hides servers : Provider's platform and infrastructure

"Modular" non-monolithic : Decomposed into several standalone functions
Ease of development

Ease of deployment

Built-in scalability

Cost efficiency

• Fastest growing computing paradigm
Providers: Amazon, Google, Microsoft, IBM, Alibaba, Oracle....
Clients: Netflix, Guardian, T-Mobile, PayPal, P&G....

FaaS Applications

• State machine workflow of independent stand-alone functions
(happens-before relation)

• Workflow of functions is scheduled by a runtime

• Dynamically instantiated and executed on-demand

• Event-driven execution – triggers, API, crons

• Stateless functions use remote object stores for input/output and
ephemeral data stored
Object-granularity, Strong Consistency Model
GET reads the value of the last PUT
last acknowledged PUT visible

• Re-execution of idempotent function, if compute node fails
An Example FaaS workflow

(AMBER Alert Pipeline)

Data movement!
Object reads and writes are software managed
Explicit data duplication from object stores into compute nodes
High access latencies to object store servers over congested general-
purpose eth networks

Can we do better?
Shared memory semantics for object store – load/store
Implicit object movement – on-access
Handle all data movement in hardware – performance
Next-gen datacenter network technologies – efficiency
Incur minimal changes to the entire software stack – productivity

Motivation: Problems with FaaS object stores

• The “disaggregated memory” node
Rack-scale shared memory node to house the objects

• Shared memory semantics
Shared memory interface to communicate/pass objects

• A load/store interface
Hardware-semantic memory fabric interconnect
(GenZ, OpenCAPI)

• Implicit data movement
Application transparent, managed by hardware

• Hierarchical management
Separation of concerns between intra and inter node
protocols

Proposed Disaggregated Memory setup
enabled by CXL + GenZ

Motivation: The opportunity

Single function execution:
Disaggregated Memory vs AWS S3

• Simulation: SynchroTrace-gem5

• Caches: L1 I/D 64KB, 8-way; L2 16MB 16-way

• Memory: single channel, DDR4, 16GB

• Disaggregated Mem: 500ns one-way*, DDR4

• Benchmarks – CPU, mem intensive FunctionBench+

• Object sizes – small <50KB, large <2MB

89% and 25% geomean execution time speedup for
small and large object functions respectively

2.75

Increasing Object size

*DeACT [HPCA '21] +FunctionBench[CLOUD ’19]

Motivation: Is there performance?

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Sp
ee

d
u

p

AWS S3 Disaggr. Mem

How?

• Hardware caching
Cache recently used data from memory node in SRAM/DRAM caches on compute
node

• Hardware coherence
(a) Inter-node coherence to enforce the object store memory consistency
(b) GenZ NIC participates in the coherence (not behind the IOMMU)
e.g., CXL.cache

• Hardware fault-tolerance
Multiple independent, loosely-coupled nodes mandates fault-tolerance

Objective: Improving Performance of
FaaS applications

Field Data Study of Function-Object Accesses *

Object sizes
• Median: 28B, 3rd Quartile: 2.2KB
• Long tail of object sizes (max 1.2 GB)
• Objects read are larger than the ones written

Object access and reuse characteristics
• Majority of apps access single, different object per invocation
• 42% of the apps access the same object in more than one invocation
• Only 11% of apps access more than 1 object per invocation

Objects temporal access pattern
• Accesses to a large percent of objects are very bursty (Poisson distrib)
• 15% of applications account for 99% of the invocation
• 30% of functions access the same data across all invocations

*Azure Public Dataset (github)

Objects have good
temporal locality

Objects reused throughout
the application workflow

Objects fit in onchip
caches, but large objects
do exist

Can and should objects be cached? Yes!

• Shared Memory interface across nodes

• Scalable, low-latency coherent disaggregated memory

• Failure resilient disaggregated memory

Challenges: Architecting Coherent
Disaggregated Memory for FaaS applications

1. Shared Memory interface across nodes
• Application transparent
• Map objects into address space of functions (processes) running on same or different

compute nodes

2. Scalable, low latency coherent disaggregated memory
• Cognizant of underlying inter-node interconnect characteristics – flit size, packet

ordering, topology
• Specialized for FaaS functions data sharing characteristics – function

scheduling/communication, object read/write, temporal accesses characteristics

3. Failure resilient disaggregated memory
• Compute node failures
• Failures during object writes (network failure)
• Disaggregated memory node failure

Design Requirements (specifications)

1. Shared Memory across nodes
• Encapsulates workflow into single unified orchestrator function [Faastlane, ATC ’21]

• Objects passed between function processes through shared memory
inter-process communication (IPC)

• Extend shmem IPC to multi-node with addr mapping/translation [DeACT, HPCA '21]

2. Scalable, low latency coherent disaggregated memory
• Coarse-grained coherence with write-through caches

• Hardware/Software co-operation (Coherence Directory-FaaS scheduler)

3. Failure resilient disaggregated memory
• Non-blocking coherence protocol

• Object atomic, durable hardware transactions

Implementation Particulars

Evaluation

Evaluation

Enablement

Inter-rack consistency protocol

e.g., Amazon Dynamo++ [SOSP ’07]

General purpose ethernet

Software sharing / replication

Intra-rack coherence protocol

Scope of this work : “Bolt”

Memory-semantic interconnect GenZ/OpenCAPI

Hardware caching, Optimized coherence,
Hardware fault-tolerance

The disaggregated memory-based object store participates in 2 hierarchies of communication

Putting it all together:
FaaS with Disaggregated Shared Memory

