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Vision of CXL Future
We imagine a future where disagg memory is 
increasingly common
Memory is expensive
• Can be 50% of server cost for Azure [1] 
• 40% of rack cost for Meta [2]

Memory BW bound app performance loss may follow ratio of single socket memory 
performance to socket-socket/socket-device
Improvements to per-socket performance exacerbates this problem (mem wall)
Our idea: It should be possible to mitigate performance loss of CXL backed memory by 
dispatching targeted compute tasks to the memory pool
Question: Do we need specialized In-Mem compute, or will general purpose CPU 
suffice?

CXL Mem

Network

Register
Cache

DRAM
Smart

Disk /

20ps
1-10ns

80ns

10µs - 10ms

200+ns



3 © 2024 Arm

Modeling CXL without CXL Hardware
Using the same strategy from Pond 
paper: forcing cross-socket NUMA 
access to emulate CXL link
Measured: +100ns memory access 
delay, 32GB/s cross-socket bandwidth
Real CXL hardware will be no better in 
terms of latency or bandwidth, so we 
expect all our findings to be a "best 
case" scenario
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Workload Analysis:
VectorDB
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Vector Databases
What are vector databases?
• Vector databases store and maintain embedding vectors 

from structured/unstructured data (i.e. text or images) 
• The distance of 2 embedding vectors in the vector space 

implies their semantic similarity
• Traditional distance calculation is expensive. Vector 

databases use vector indexing to pre-calculate the 
distances to enable faster retrieval at query time

VectorDB codebase
• FAISS (Facebook AI Similarity Search): library by Meta, 

integrated into many VectorDB products (Milvus etc.)
• Key kernels: 

1. Indexing: different algorithms, pre-compute to enable fast 
search
2. Query: irregular accesses and BW pressure 

https://weaviate.io/blog/what-is-a-vector-database
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VectorDB (faiss) HNSW kernel offloading
HNSW: Hierarchical Navigable Small Worlds
• One indexing algorithm used commonly in VectorDB, uses 

layers to reduce the neighbor search space
• Both indexing (write) and query (read) are memory sensitive

Proof of Concept offloading
• Two processes running separately: 

host runs the main app
device runs an offloading service

Results: For specific kernels, offloading PoC 
demonstrates huge performance benefit in near 
memory processing 
• Up to 7x improvement in latency
• Limited overhead (under 10%)

Platform B Indexing Query 
top 10

Query 
top 500

Saving 6.87x 7.04x 6.75x

Overhead 3.76% 5.84% 8.22%
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Workload Analysis:
ML Inference
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Typical Machine Learning Workload

Model consists many operations structured in DAG (Directed Acyclic Graph)
• Convolution (Conv), Normalization (Norm), Activation (ReLU)

Different models use different sets of operators
Different kernels have very different characteristics
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Creating a Memory-Compute Placement Algorithm
CXL Inference Serving - there exists a multi-objective function:
• Maximize the “far” CXL pool memory allocation
• Minimize the total run-time of the ML model (referred to as “latency”)
• Weighted sum cost function w/ weights [0-1] selected to prioritize host data placement or latency

Offline Memory-Compute Placement Algorithm takes the cost function bias as input, 
and assign for each layer LOCAL/REMOTE:
• Weights
• Intermediate Tensors
• Compute

To emulate “lesser” cores on CXL Mem Pool side, drop clock freq on socket 2 from 3GHz 
to 2GHz
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Partitioning Results – VGG_16 Platform B
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Partitioning Results – VGG_16 Platform B
Target of optimization is to find 
pareto frontier of solutions
Measure of efficacy:
• Given fixed amount of data placed on 

host, no solution should improve on 
latency that we didn’t find

• Vice versa for fixed amount of latency

TARGET
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Partitioning Results – VGG_16 Platform B
Points in GREEN captured during 
profiling step to generate perf lookup 
table used in partitioning strategy
All intermediate tensors placements 
generated, then for each run w/ 
compute all LOCAL/REMOTE
No migration -> no migration 
overhead
Symmetry across X axis, as twin 
points differ by compute at 
3GHz/2GHz

Weights - LOCAL
Compute - LOCAL

Weights - LOCAL
Compute - REMOTE

Weights - REMOTE
Compute - LOCAL

Weights - REMOTE
Compute - REMOTE

3GHz 2GHz
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Partitioning Results – VGG_16 Platform B
Points in BLACK randomly generated 
run configurations
• Weight placement LOCAL/REMOTE
• For each op random:

Result Tensor LOCAL/REMOTE
Compute LOCAL/REMOTE

Suffers overhead of compute 
migration
Provides baseline for algorithmic 
improvement
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Partitioning Results – VGG_16 Platform B
Points in BLUE - PINK spectrum 
captured based on user selected 
host-data or latency bias
Sweep across host-data/latency bias 
evenly 0 -> 1
15% latency improvement vs no 
compute offload
Takeaway: Intelligent mem 
partitioning and compute offload -> 
run models with nearly all memory 
remote with minimal latency penalty
Takeaway: Compute offload to slow 
cores recovers lost latency

Full latency bias

Full host data 
bias

15%
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Two other models, same result:
Yolo v3 Stable Diffusion

Results hold across models, and improvement scales with memory 
sensitivity. The best use of far memory in almost all cases needs to 
move both compute and data.
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Conclusion and Takeaways
• Data Placement and Compute Placement are both important

• The most efficient use of far memory requires compute offload; not just data placement

• Identifying and offloading memory-sensitive parts of applications using Near-Memory 
Compute helps mitigate the latency and bandwidth limitations inherent in these types 
of devices
• In some cases, it can nearly recoup all lost performance

• Challenges of course exist to support adoption of function-level compute offload:
o Software must be easily broken down into tasks and profiled for memory sensitivity
o Host and CXL devices must share addressing if not be fully coherent for efficient offload
o CXL devices need to include dedicated Near Memory Compute resources

• Automation of function-level profiling and offloading a good direction for future 
research
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